08.01.25 – Leichtbau — read English version

Tapes aus recycelten Carbonfasern

Die DITF haben hochorientierte Tapes aus recycelten Carbonfasern (rCF) entwickelt, die auch für Hochleistungsanwendungen wie Strukturbauteile im Automobil wiedereingesetzt werden können.

Infinity-rCF-tape-DITF.jpg

Entwickelte „Infinity“ rCF-Tape-Variante mit Besäumung der Tapekanten. © DITF

 
Infinity-Tapes-DITF.jpg

Entwickelte „Infinity“ rCF-Tape-Variante ohne Besäumung der Tapekanten. © DITF

 
Alle Bilder anzeigen

Aufgrund ihrer ausgezeichneten mechanischen Eigenschaften und ihrem geringen Eigengewicht werden in Leichtbauanwendungen, bei denen eine hohe Festigkeit und Steifigkeit bei zugleich minimalem Gewicht entscheidend sind, zunehmend carbonfaserverstärkte Kunststoffe (CFK) eingesetzt. Jedoch gehen mit dem wachsenden Einsatz an CFK auch große Mengen an Carbonfaserabfällen einher. Aktuell werden lediglich 15 % der CFK-Abfälle rezykliert. Die übrigen über 85 % dieser CFK-Bauteile landen am Ende ihrer Lebensdauer in Müllverbrennungsanlagen oder Deponien. Durch die Verbrennung kann zwar Energie in Form von Wärme oder Strom gewonnen werden, jedoch würde das Recycling der Carbonfasern weit mehr für den Klima- und Ressourcenschutz beitragen.

Carbonfaserbasierte Verbundwerkstoffe kreislauffähig machen

Bisher haben sich für Carbonfaserabfälle nur Verarbeitungsrouten etablieren können, die eine signifikante Verringerung der CFK-Eigenschaften und somit eine Einschränkung der Einsatzbereiche aufweisen. Die Deutschen Institute für Textil- und Faserforschung Denkendorf (DITF) befassen sich seit ca. 15 Jahren damit, die klassischen Spinnereiprozesse an das neuartige Fasermaterial rCF anzupassen. Ziel ist es dabei, eine neue Kategorie von rCF-Tape-Halbzeugen zu entwickeln und in ihren mechanischen Eigenschaften so zu verbessern, dass sie Neufasermaterial in strukturellen Anwendungen tatsächlich ersetzen kann. Nur dann sind carbonfaserbasierte Verbundwerkstoffe wirklich kreislauffähig.

Um ein orientiertes Halbzeug ähnlich eines Carbonprodukts aus Neufasern herzustellen, ist es entscheidend, die Wirrlage der rCF aufzuheben und die Fasern wieder parallel zueinander auszurichten. Eine vielversprechende Möglichkeit dies zu erreichen, stellt die Herstellung von hochorientierten Tapes dar. Hierbei werden die Carbonfasern in einem ersten Schritt geöffnet und mit thermoplastischen Matrixfasern (Polyamid 6) gemischt. Im Anschluss wird die Fasermischung in einem für die Verarbeitung von Carbonfasern modifizierten Krempelprozess weiter separiert und orientiert. Am Auslauf der Krempel wird das im Krempelprozess entstehende Faserflor zu einem Faserband zusammengefasst und in eine Kanne abgelegt. Dieses rCF/PA6-Faserband stellt das Ausgangsmaterial für den folgenden Tapebildungs-Prozess dar und weist bereits eine Vororientierung der Carbonfasern auf. Im nachfolgenden Verstreckprozess kann die Orientierung der Fasern noch gesteigert werden. Durch das Verziehen des Faserbandes werden die Fasern in Verzugsrichtung bewegt und längs ausgerichtet. Der letzte Prozessschritt ist die Tapebildung, bei der das Faserband unter Spannung in die gewünschte Form gebracht und anschließend in eine endlose Tapestruktur fixiert wird. Bei der Fixierung schmelzen die Thermoplastfasern teilweise oder komplett auf und erstarren anschließend.

Recycling statt Downcycling

Diese an den DITF entwickelte Technologie zur Herstellung von hochorientierten rCF-Tapes wurde im Rahmen des Forschungsprojektes „Infinity“ (03LB3006) eingesetzt, um einen nachhaltigen und faserschonenden Recyclingkreislauf für CFK nachzuweisen. Auf Basis der „Infinity“-Tapes wurde ein Verbundwerkstoff entwickelt, der 88 % der Zugfestigkeit und des Zugmoduls eines vergleichbaren Neufaserprodukts erzielte. Zudem ergab eine Lebenszyklusanalyse, dass sich das Treibhauspotenzial bei Einsatz von Pyrolysefasern um ca. 49 % und für rCF aus Produktionsabfällen um ca. 66 % reduziert.

Die Ergebnisse weisen somit den Weg zur echten Substitution von Neufaser-CFK durch Recycling-CFK anstelle des Downcyclings zu schwach orientierten Materialien und dem damit verbundenen Verlust an mechanischen Eigenschaften.